Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons.

نویسندگان

  • X F Zhang
  • X T Hu
  • F J White
چکیده

The nucleus accumbens is a forebrain region that mediates cocaine self-administration and withdrawal effects in animal models of cocaine dependence. Considerable evidence suggests an important role of dopamine D1 receptors in these effects. Using a combination of current-clamp recordings in brain slices and whole-cell patch-clamp recordings from freshly dissociated neurons, we found that nucleus accumbens neurons are less excitable in cocaine withdrawn rats because of a novel form of plasticity: reduced whole-cell sodium currents. Three days after discontinuation of repeated cocaine injections, nucleus accumbens neurons recorded in brain slices were less responsive to depolarizing current injections, had higher action potential thresholds, and had lower spike amplitudes. Freshly dissociated nucleus accumbens neurons from cocaine-pretreated rats exhibited diminished sodium current density and a depolarizing shift in the voltage-dependence of sodium channel activation. These effects appear to be related to enhanced basal phosphorylation of sodium channels because of increased transmission through the dopamine D1 receptor/cAMP-dependent protein kinase pathway. The effects of repeated cocaine administration were not mimicked by repeated injections of the local anesthetic lidocaine and were not observed in neurons within the motor cortex, indicating that they did not result from local anesthetic actions of cocaine. Because nucleus accumbens neurons are normally recruited to coordinate response patterns of movement and affect, the decreased excitability during cocaine withdrawal may be related to symptoms such as anergia, anhedonia, and depression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons.

Dopamine D1 receptors within the nucleus accumbens (NAc) are intricately involved in the rewarding effects of cocaine and in withdrawal symptoms after cessation of repeated cocaine administration. These receptors couple to a variety of ion channels to modulate neuronal excitability. Using whole-cell recordings from dissociated adult rat NAc medium spiny neurons (MSNs), we show that, as in dorsa...

متن کامل

Repeated Cocaine Administration Suppresses HVA-Ca Potentials and Enhances Activity of K Channels in Rat Nucleus Accumbens Neurons

Hu, Xiu-Ti, Somnath Basu, and Francis J. White. Repeated cocaine administration suppresses HVA-Ca potentials and enhances activity of K channels in rat nucleus accumbens neurons. J Neurophysiol 92: 1597–1607, 2004; 10.1152/jn.00217.2004. The nucleus accumbens (NAc) is an important forebrain area involved in sensitization, withdrawal effects, and self-administration of cocaine. However, little i...

متن کامل

Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons.

The nucleus accumbens (NAc) is an important forebrain area involved in sensitization, withdrawal effects, and self-administration of cocaine. However, little is known about cocaine-induced alterations in the neuronal excitability and whole cell neuroplasticity in this region that may affect behaviors. Our recent investigations have demonstrated that repeated cocaine administration decreases vol...

متن کامل

Withdrawal from Cocaine Self-Administration Alters NMDA Receptor-Mediated Ca2+ Entry in Nucleus Accumbens Dendritic Spines

We previously showed that the time-dependent intensification ("incubation") of cue-induced cocaine seeking after withdrawal from extended-access cocaine self-administration is accompanied by accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) in the rat nucleus accumbens (NAc). These results suggest an enduring change in Ca(2+) signaling in NAc dendritic spines. The purpose of the prese...

متن کامل

Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization

Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc) have been proposed to contribute to drug-mediated addictive behaviors. Here we have used an optogenetic approach to examine the role of NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs) in cocaine-induced behavioral sensitization. Adeno-associated viral vectors encoding channelrhodopsin-2 (ChR2) were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 1998